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In this paper we investigate some statistical mechanical properties of systems consisting of two hard disks in
a circular cavity and two hard spheres in a cylindrical pore. Both systems conserve not only the total energy but
the total angular momentum, and this conservation affects thermodynamic quantities such as the temperature
and pressure of these systems. We show the dependence of the thermodynamic quantities of these systems on
conserved quantities with a statistical mechanical treatment and molecular dynamics simulations.
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I. INTRODUCTION

Investigations of systems confined to a vessel or a slit are
important for the understanding of the behavior of nanosys-
tems and have already been done extensively �1,2�. Confine-
ment of substances in a vessel changes some properties from
those of the bulk, e.g., the freezing temperature of porous
systems shifts from that of the bulk systems �1�. To explain
experimental results and predict new properties of confined
systems, many researchers have studied these systems with
various interaction potentials not only �numerical� experi-
mentally but also theoretically.

A system consisting of particles with a hard core potential
is one of the simplest models. In spite of the simplicity of a
hard sphere model, it yields interesting and nontrivial behav-
ior. Confined hard disk or sphere systems have been investi-
gated from the viewpoint of statistical mechanics �3–8� and
dynamical systems �9,10�. Freezing and glass transitions of
hard disk systems in a circular cavity have been investigated
by molecular dynamics simulations �3,4�. Román et al. com-
puted the density profiles �5� and velocity distribution �6� of
this system, taking into account the effect of the conservation
of the total angular momentum. A system of hard spheres in
a cylindrical pore exhibits interesting properties associated
with a phase transition. For instance, the structure of this
system experiences transitions when the radius of the pore is
changed at zero temperature �11�. It is also observed that a
sudden change in the density occurs when the radius of the
pore exceeds some value which is related to the appearance
of a van der Waals loop �12�.

In this paper, we treat very small systems, i.e., two hard
disks in a circular cavity and two hard spheres in a cylindri-
cal pore. In spite of the smallness of the system, it is not easy
to understand the statistical mechanical properties of two-
particle systems. However, in some cases, one can exactly
compute the phase space volumes of two-particle systems
�13–16� and they predict unexpected behavior. For instance,
the phase space volume of a system consisting of two hard
disks or spheres in a rectangular box can be computed ex-
actly, and the compressibility in one direction, which is ob-
tained from the phase space volume, becomes negative for a
certain size of the box �13,14�. This behavior is confirmed
from molecular dynamics simulations �14,17�.

This paper is organized as follows. In Sec. II, we consider
the phase space volume of a system consisting of two hard
disks in a circular cavity. This system conserves not only its
energy but also its total angular momentum, and this conser-
vation complicates analytical computation of the phase space
volume. This forces us to do numerical integration at the
final stage of the computation of the phase space volume.
From this phase space volume, we can compute thermody-
namic quantities such as entropy, temperature, and pressure,
and we compare these theoretical results with those obtained
from molecular dynamics simulations to check the ergodicity
of the system numerically. In particular, we focus on the
dependence of thermodynamic quantities on the total angular
momentum. We also discuss the cause of the large statistical
error of the pressure when the size of the cavity is small.
After showing results for the two-dimensional system, we
study a system consisting of two hard spheres in a cylindrical
pore in Sec. III. In this system, calculations of thermody-
namic quantities are similar to those of two hard disks in a
circular cavity. Here, we pay attention to the behavior of
pressure in the longitudinal direction; a negative compress-
ibility region appears when both the absolute value of the
total angular momentum and radius of the pore are small.
Section IV is a summary.

II. TWO HARD DISKS IN A CIRCULAR CAVITY

Now we consider a circular cavity with a radius R which
contains two hard disks, each with a diameter d and mass m.
The center of each hard disk can move in a circle whose
radius is R−d /2. We assume that the hard disk collides with
the wall of the circular cavity elastically. For this system, it is
useful to express the position and momentum of the ith hard
disk �i=1,2� as a polar coordinate qi= �ri ,�i� and a conjugate
momentum pi= �pr,i , p�,i�, respectively. Then, the Hamil-
tonian of this system is given by

Hcir = �
i=1

2 � pr,i
2

2m
+

p�,i
2

2mri
2 + Vext�qi�� + Vint��q1 − q2�� , �1�

where Vext�qi� is the potential that confines the ith hard disk
in the circular cavity,

Vext�qi� = 	0, 0 � ri � R − d/2,

� otherwise,

 �2�
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and Vint��q1−q2�� is the interaction potential between two
hard disks,

Vint��q1 − q2�� = 	0, �q1 − q2� � d ,

� , �q1 − q2� � d .

 �3�

In the phase space, the motion of this system is restricted to
the surface with constant total angular momentum L and
energy E. The entropy of this system S is defined by �18–21�

S = ln �cir�E,L� . �4�

Here �cir�E ,L� is the volume bounded by the energy surface
H=E on the surface p�,1+ p�,2=L in the phase space, i.e.,

�cir�E,L� =� ��
i=1

2

drid�idpr,idp�,i���E − Hcir�

	
�L − �
i=1

2

p�,i� , �5�

where ��x� and 
�x� are the Heaviside and Dirac delta func-
tion, respectively. This definition of entropy is convenient
for this system since the temperature obtained from Eq. �8�
below is consistent with the equipartition law �see Fig. 1
below�, even if the degree of freedom of the system is small
�22�. Performing the integration in Eq. �5� over pr,i and
p�,i �i=1,2� gives the volume of the three-dimensional
ellipsoid whose radii are �, �, and r1r2� /r1

2+r2
2, where

�=2mE−L2 / �r1
2+r2

2�. In addition, we integrate Eq. �5� over
�1 and �2 to obtain

�cir�E,L� = �
0

R−d/2

dr1�
0

R−d/2

dr2
4�r1r2

3�r1
2 + r2

2�2 �2mE�r1
2 + r2

2�

− L2�3/2g�r1,r2;d��„2mE�r1
2 + r2

2� − L2
… , �6�

where g�r1 ,r2 ;d�, in which the d dependency is explicitly
written for later convenience, is

g�r1,r2;d� =�
0,

r1
2 + r2

2 − d2

2r1r2
� − 1,

4��� − cos−1� r1
2 + r2

2 − d2

2r1r2
�� , − 1 �

r1
2 + r2

2 − d2

2r1r2
� 1,

4�2,
r1

2 + r2
2 − d2

2r1r2
 1.

� �7�

The remaining integration in Eq. �6� over r1 and r2 is per-
formed numerically to obtain �cir�E ,L� explicitly.

The temperature T is obtained from S through the thermo-
dynamic relation as �18,19,23�

T = � �S

�E�−1

. �8�

In this paper, as units of length and mass we choose the
diameter d and the mass m of a hard disk, respectively. The
unit of time is chosen so that the Boltzmann constant kB=1.
We take E=3 /2 for this system. In Fig. 1, we show the de-
pendence of T on L for the cases R=2 and 2.5. Here we also

plot the long-time average of pr,1
2 /m, �pr,1

2 /m�, computed
from molecular dynamics simulations, to show that the aver-
age of pr,1

2 / �2m� is equal to T /2 obtained from Eq. �8�. Re-
placing L in Eq. �6� by −L, we recognize that T is an even
function of L, which is consistent with Fig. 1. It is confirmed
from Fig. 1 that T has a maximum value at L=0 and de-
creases monotonically as the absolute value of L, �L�, in-
creases. We also see that the temperature for R=2.5 is higher
than that for R=2.0, except for L=0, where the two tempera-
tures coincide. These results are related to the fact that the
phase space volume is reduced as L becomes large and R
becomes small. In other words, it is easy for pr,1

2 / �2m� to be
large when L is small and/or R is large. It is worth noting
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FIG. 1. Dependence of T on L for the system with two hard
disks in circular cavities with different R. Curves were obtained
from Eq. �8� for R=2 �solid� and 2.5 �dashed�. Points represent
long-time average of pr,1

2 /m obtained from molecular dynamics
simulations for R=2 �squares� and 2.5 �circles�. We set E=3 /2 in
both cases.
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that Eq. �6� is written as �cir�E ,L�=E3/2

	 �terms independent of E� when L=0. Hence, when L
=0, T=2E /3, which is independent of R.

From the thermodynamic relation, the pressure is given
by �23�

P = T� �S

�V
� =

T

2�R
� �S

�R
� , �9�

where V �=�R2� signifies the volume of the circular cavity.
On the other hand, we can calculate a pressure, which we
denote by PMD, from molecular dynamics simulation as a
time average,

PMD��� =
1

�

�
i=1

2

�
n=1

Ni

2pi,r�n�

2�R
. �10�

Here 2pi,r�n� is the momentum transfer from the ith hard disk
to the wall due to the nth collision, and Ni is the total number
of collisions of the ith hard disk with the wall in time �.
Below, we compare the pressure defined by Eq. �9� with that
obtained from molecular dynamics simulations.

Figure 2 shows pressure as a function of R for the cases
L=0 and 2. In the simulations, we set �=105 in Eq. �10� and
performed simulations starting from 1000 different initial
conditions for each data point in order to achieve good sta-
tistics. It is noted that the statistical error is less than the
point size. The pressure decreases monotonically as R in-
creases in both cases, and we do not observe a singularity
such as the negative compressibility which is observed for a
system with two or three hard disks in a rectangular box
�13,17,24�. We will comment on this in Sec. III.

We observe in Fig. 2 that the statistical errors of the pres-
sure for a system with small cavity size become somewhat
large when L=0. To focus on this point, we define PMD�t ,��
by

PMD�t,�� =
1

�

�
i=1

2

�
n=1

Ni,t

2pi,r�n�

2�R
, �11�

where Ni,t is the total number of collisions of the ith hard
disk with the wall during the time from t to t+�. In Fig. 3�a�,
we show PMD�t ,�� as a function of t for the case R=1.5, E
=3 /2, and L=0. Here we take �=105. PMD�t ,�� mostly fluc-
tuates between 0.54 and 0.55, i.e., around P predicted from
Eq. �9�, but sometimes it becomes large. In particular,
PMD�t ,�� continues to be larger than 0.6 for some duration of
time around t=3.6	107. This causes a large statistical error.
To understand this behavior from the dynamics of hard disks,
we show the trajectory q1�t� in the time interval between t1

=3.5	107 and t1+103 in Fig. 3�b� with PMD�t1 ,��=0.542.
We also show q1�t� in the time interval between t2=3.6
	107 and t2+103 in Fig. 3�c� with PMD�t2 ,��=0.611. The
disk can move in the whole circular cavity in the case of Fig.
3�b�, while the trajectory in Fig. 3�c� is restricted to a part of
the circular cavity. The second disk naturally behaves simi-
larly.
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FIG. 2. Pressure as a function of R for the system with two hard
disks in circular cavities with different L. Curves represent the re-
sult of Eq. �9� for L=0 �solid� and 2 �dashed�. Points represent the
result of molecular dynamics simulations for L=0 �squares� and 2
�circles�. We set E=3 /2.
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FIG. 3. �a� PMD�t ,�� as a function of t. �b� Trajectory of q1 in
the time interval between t1=3.5	107 and t1+103. �c� Trajectory of
q1 in the time interval between t2=3.6	107 and t2+103. We set
R=1.5, E=3 /2, and L=0.
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Thus, this behavior is seen to come from the packing
geometry. That is, when R is small and two hard disks are
packed in a small space, the two hard disks form a kind of
bound state with long lifetime. This quasinonergodic behav-
ior recalls the real nonergodicity which was found for a rect-
angular box with two hard disks �13,17�. The pressure ob-
tained from a molecular dynamics simulation deviates from
the theoretical prediction when the system is in a bound
state, since ergodicity of a system is a crucial factor for the
validity of statistical mechanics.

To see the influence of this deviation on the pressure ob-
tained from Eq. �10�, we display PMD��� as a function of � in
Fig. 4. We observe that PMD��� relaxes toward the value
computed from Eq. �9� even though it increases considerably
around t2=3.6	107 for the reason noted above. Therefore,
we believe that PMD��� converges to P defined by Eq. �9� as
�→�.

Next our interest is in the dependence of pressure on L.
One may expect from Fig. 2 that the pressure decreases as
�L� increases with total energy fixed. In Fig. 5, we plot the
pressure as a function of the total angular momentum, and
this plot shows the expected behavior. We take parameters in
Fig. 5 that are the same as those in the case of the solid curve
in Fig. 1.

We show in Fig. 6 the density ��r� �Fig. 6�a�� and the
mean radial energy Er�r� �Fig. 6�b�� at the distance r from
the center of the cavity, which are defined by

��r� =

��
i=1

2


�ri − r��
2�r

�12�

and

Er�r� =
1

2�r��r�
��

i=1

2

pr,i
2 
�ri − r�

2m
� , �13�

respectively. The density at the wall becomes large as �L�
increases, which is interpreted as the effect of a centrifugal

force. The mean radial energy, which can be regarded as the
temperature at r, is dependent on r except for L=0, and is
largest at the wall. This means that the average of the radial
energy when a disk collides with the wall is larger than the
temperature, because the temperature is interpreted as the
average of the radial energy over the whole phase space vol-
ume. Position-dependent temperatures have been studied for
other systems with conservation of the total angular momen-
tum �25�. From Fig. 6, it is seen that the collision frequency
with the wall increases, but the average force acting on the
wall per collision decreases, as �L� increases.

III. TWO HARD SPHERES IN A CYLINDRICAL PORE

We turn to a system with two hard spheres in a cylindrical
pore. Each hard sphere has a diameter d and mass m. The
cylindrical pore has a radius R and a longitudinal length L.
We can write the Hamiltonian of this system by using the
position and the momentum of the ith hard sphere �i=1,2�,
which are denoted by qi= �ri ,�i ,zi� and pi= �pr,i , p�,i , pz,i�, re-
spectively,

Hcyl = �
i=1

2 � pr,i
2 + pz,i

2

2m
+

p�,i
2

2mri
2 + Vext�qi�� + Vint��q1 − q2�� ,

�14�

where the expression for Vint is the same as Eq. �3�, while
Vext is written as

Vext�qi� = 	0, 0 � ri � R − d/2 and d/2 � zi � L − d/2,

� otherwise.



�15�

Since this system also conserves the total energy E and the z
component of the total angular momentum L, the phase
space volume of this system, �cyl, is obtained from a similar
calculation as before �see Eq. �6��
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FIG. 4. PMD��� as a function of � for the same conditions as in
Fig. 3.
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FIG. 5. Dependence of pressure on L. Curve represents the re-
sult of Eq. �9�. Points represent the result of molecular dynamics
simulation. We set E=3 /2 and R=2.
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�cyl�E,L� =� ��
i=1

2

drid�idzidpr,idp�,idpz,i���E − Hcyl�

	
�L − �
i=1

2

p�,i�
� �

0

R−d/2

dr1�
0

R−d/2

dr2�
0

L−d

dz
r1r2�L − d − z�

�r1
2 + r2

2�3

	�2mE�r1
2 + r2

2� − L2�5/2h�r1,r2;z�

	�„2mE�r1
2 + r2

2� − L2
… �16�

where z=z2−z1 and h�r1 ,r2 ;z� is

h�r1,r2;z� = 	g�r1,r2;d2 − z2� , z � d ,

4�2, z  d ,

 �17�

with g defined by Eq. �7�

We define the entropy of this system by S=ln �cyl�E ,L�
and other thermodynamic quantities are obtained from S
�18,19,23�, e.g., the pressures in the longitudinal and the ra-
dial direction, denoted by Pl and Pr, respectively, are given
by

Pl =
T

�R2� �S

�L
� , �18�

Pr =
T

2�RL
� �S

�R
� , �19�

where T is defined by Eq. �8�. Hereafter our attention is paid
to the pressure Pl because the behaviors of the temperature
and pressure in the radial direction for this system resemble
those for the system of two hard disks in a circular cavity. In
Fig. 7, we consider the dependence of Pl on the size of the
cylindrical pore. We depict Pl= Pl�L ,R ,E ,L� as a function of
L in Fig. 7. As in Sec. II, we choose m and d as the units of
mass and length, and we set E=5 /2 and L=0. It is seen from
Fig. 7 that a negative compressibility region, i.e., a region
where the pressure increases as L increases, exists around
L=2, when R=1.1, but this region disappears when R be-
comes large.

The reason for the occurrence of negative compressibility
is explained as follows. Pl increases monotonically when L
decreases from L=2.5d, because the volume of the pore de-
creases. As L approaches 2d, a configuration in which two
spheres have considerable contact with each other along the z
axis produces pressure on the surfaces. This configuration
gives higher pressure compared with other configurations,
and this effect is large for small R. If L further decreases
from L�2d, then the probability of this configuration de-
creases drastically. This causes a decrease of pressure when
L decreases around L�2d. When L decreases further, Pl
increases again because of reduction of the size of the pore.
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FIG. 6. �a� Density ��r� defined by Eq. �12� and �b� mean radial
energy Er�r� defined by Eq. �13� obtained from molecular dynamics
simulations for L=0 �solid curve�, 1 �dashed curve�, and 2 �dotted
curve�. We set R=2 and E=3 /2.
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FIG. 7. Pl as a function of L for the system with two hard
spheres in cylindrical pores with different R. Curves represent the
result of Eq. �18� for R=1.1 �solid�, 1.2 �dashed� and 1.3 �dotted�.
Points represent the result of simulations for R=1.1 �square�, 1.2
�circle�, and 1.3 �triangle�. We set L=0 and E=5 /2.
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As a result, the negative compressibility region appears when
R is relatively small. On the other hand, for the system dis-
cussed in Sec. II, the phenomenon mentioned above does not
occur because of the shape of the cavity.

Next we discuss the L and L dependence of Pl. In Fig. 8,
we depict Pl as a function of L for L=0, 0.5, and 1. The
other conditions are the same for the three curves. We can
see from Fig. 8 that the compressibility is negative around
L=2 when L=0, while the compressibility is always positive
for L=0.5 and 1.

Now, we consider Pl as a function of L, R, T, and L, i.e.,
Pl= Pl�L ,R ,T ,L�, instead of Pl= Pl�L ,R ,E ,L�. Then E has
to be adjusted in order to obtain a T specified in advance. In
Fig. 9, we depict Pl as a function of L for L=0, 0.5, and 1
with R=1.1 and T=1. The negative compressibility region is
still observed when L=0 and this region disappears when L
becomes large. The difference in Pl among the three curves
in Fig. 9 turns out to be small as compared with the three
curves in Fig. 8. This is because E has to increase to keep the
temperature constant when L increases.

IV. SUMMARY

In summary, we have investigated systems consisting of
two hard disks in a circular cavity and two hard spheres in a
cylindrical pore by using statistical mechanics and molecular
dynamics simulations. We adopted these vessels to confine
the particles and to satisfy conservation of both the total
energy E and the total angular momentum L. It is noted that
the phase space volume Eq. �5� played a fundamental role in
the theoretical approach.

At this point, we comment on some recent works which
also deal with the conservation of the total angular momen-
tum in addition to the total energy, based on similar methods
�26–30�. The systems studied there are composed of particles
with attractive interaction, e.g., self-gravitating and Lennard-

Jones systems, and the particles need not be put in a vessel.
For most of these investigations, the Dirac 
 function is used
in the definition of the phase space volume, while we used
the Heaviside function in Eq. �5�. For systems with many
degrees of freedom, the difference between the two defini-
tions of the phase space volume is not important �31�. How-
ever, for small systems, this difference may be important,
and we confirmed in this paper that our numerical results are
actually supported by the definition Eq. �5�.

Our first subject of interest is the dependence of thermo-
dynamic quantities such as temperature T, Eq. �8�, and pres-
sure P, Eq. �9�, on both E and L. In the theoretical approach,
we computed the phase space volume, Eq. �5�, and obtained
the temperature and pressure from the entropy �18–21�,
which is related to the phase space volume through the ther-
modynamic relation Eq. �4�. In general, it is found that the
pressure decreases as �L� increases with the size of the vessel
kept constant.

In addition to the L dependence of thermodynamic quan-
tities, we have also discussed the nonergodic behavior of the
system with two hard disks in a circular cavity, which was
discovered in the process of analyzing large fluctuations of
the pressure. We found that the motion of hard disks is some-
times restricted to a small part of a cavity for a long time,
when the size of the cavity and the total angular momentum
are small. One encounters a similar situation when one ob-
serves the dynamics of other Hamiltonian systems �32�.
From this and the real nonergodic transition for two hard
spheres�disks� in rectangular boxes, we expect interesting
nonergodic behavior for highly compressed systems.
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FIG. 8. Pl as a function of L for the system with two hard
spheres in cylindrical pores with different L. Curves represent the
result of Eq. �18� for L=0 �solid�, 0.5 �dashed�, and 1 �dotted�.
Points represent the result of simulations for L=0 �squares�, 0.5
�circles�, and 1 �triangles�. We set R=1.1 and E=5 /2.
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FIG. 9. Pl as a function of L for the system with two hard
spheres in cylindrical pores with the same T and different L. Curves
represent the result of Eq. �18� for L=0 �solid�, 0.5 �dashed�, and 1
�dotted�. Points represent the result of simulations for L=0
�squares�, 0.5 �circles�, and 1 �triangles�. We set R=1.1 and T=1,
and E is adjusted to realize T=1.
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